If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+5x+1.2=0
a = -4.9; b = 5; c = +1.2;
Δ = b2-4ac
Δ = 52-4·(-4.9)·1.2
Δ = 48.52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{48.52}}{2*-4.9}=\frac{-5-\sqrt{48.52}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{48.52}}{2*-4.9}=\frac{-5+\sqrt{48.52}}{-9.8} $
| 126x-112=14(9x-8) | | 3p-4+5p=20 | | 10x(2x+5)=20 | | Y=100x+4 | | 20+y=18+22 | | -12=-8x-4+7x | | 2/3b+19=15 | | 20.23=4g+3.75 | | 32x+98=32x+69 | | -2k+3=9 | | -3-x6x=2 | | 9a=28=4a+3 | | 3x-28-5x=22 | | 3*12+2b=84 | | 7(2+2n)-4(n+3)=-78 | | 30+6p=7(p | | -16+k=12 | | -4(2x-5)=3x+28+1x+16 | | 2k-2=24 | | -4+4m-5=-4 | | 26-4v=9v+10 | | -3(w+4)=4w=5 | | 4(2x-1)=5(1-4x)-4 | | 3(x+2)/4=3x-1 | | 15(x+1)=5(2x+1 | | -x-20=5x+9 | | 4(x-8)=-32+5x | | 4x+5=-19- | | 9x+3=33-x | | 2x+x^2-5x=70 | | 10+5z=40 | | -7+2(-6a-5)=43 |